

Reference Mission Description Document Status

- Reference Mission Description Document completed on January 13
 - Included comments from SAO/GSFC team
 - Updated sections for consistency and added figures in Appendix
- The document was distributed to baseline it on January 13
 - Review comments are due by January 24 from C-X Management Team and Technology IPT Leads
 - The comments will be collected and disposition will be submitted to CCB on February 1
- The present baseline documents the four satellite configuration used for cost estimate of FY1999 budget exercise
 - Old Top Level Requirements

Reference Mission Configuration

- Reference configuration developed for demonstration of feasibility, establishment of technology requirements and development of cost estimates
- Four satellites in mission; launched two at a time on an Atlas V or Delta IV
- Each satellite has:
 - One Spectroscopy X-ray Telescope (SXT) with a 1.6 meter optic
 - Three Hard X-ray Telescopes (HXT) with 0.4 meter optics
 - One Extendible Optical Bench provides 10.0 meter focal length for SXT and HXT and retracts to accommodate dual launch
 - One Calorimeter Detector Assembly at SXT focus cooled by Turbo-Brayton Cryo Cooler with ADR to 50 mK
 - One Gratings Assembly, aft of SXT Optic, disperses x-rays onto an array of eight CCD's located on Rowland Circle
 - One CdZnTe Detector Assembly for each HXT
 - Separable spacecraft bus and instrument modules

Reference Configuration

Reference Configuration View from Detector End

Reference Configuration View from Optics End

Reference Mission Description Documents Future Plans

- The document will be baselined by early February
- The document will go through revision 1 by March 31
 - The new Top Level Requirements will be developed by March 31
 - The configuration will be revised to reflect the new Top Level Requirements in parallel
- The document will go through revision 2 by August 15
 - The new Top Level Requirement's Flow Down and Error Budgets will be released on June 15
 - The configuration will be revised to reflect the Flow Down and Error Budget changes

Launch Vehicle Status

- Initial GSFC Access To Space Group trades selected Atlas V-551 to insert two Constellation-X satellites into the lunar swingby orbit
 - 5 meter diameter, 87 feet long extended payload fairing
 - 5 solid strap on Booster Rockets
 - 1 heavy common core booster rocket and RD-180 engine
 - Estimated insertion capability of 6650 Kgs. at C3=-2.6
 - Available in December 2002
- KSC Expendable Launch Vehicle Group is performing internal feasibility study for Constellation-X
 - Study will be completed by mid February
 - Study covers the performance and cost using Long Fairing and Dual Payload Attach Fitting

Launch Configuration

Atlas V Dual Manifest Launch Configuration - Side View

Resource Summaries

Mass Estimate

Item	Satellite Mass (Kg)	Launch Mass (Kg)
Instrument Module	1407	2814
Wet Spacecraft Bus	774	1548
Margin		<u>788</u>
Total Launch Mass		5150
Estimated Atlas V-551 Net		

• Power Estimate Per Satellite

Launch Capability C3=-2.6

Average Satellite Power Requirement	814 Watts
End of Life Power Capability	1100 Watts

• Telemetry Estimate per Satellite

S-Band Telemetry (Housekeeping Data)	2 Kbps
X-Band Telemetry (Science Data)	1.7 Mbps
Telemetry Down Link Time Approximately	1 hour/day

5150 Kgs

Mass Estimate of Instrument Module

Item	Mass (Kg)
Mirror 1.6 m with Grating	750
CCD	20
HXT Optics 0.4 m	189*
HXT Detectors	33*
Calorimeter	33
Cryo System	90
EOB	292
TOTAL	1407

^{*}This exceeds NRA allowable mass of 195 Kgs for HXT Detectors and Optics(Adjusted for 4 satellites

Mass Estimate of Spacecraft Bus

Item	Mass (Kg)
Structure	175
Mechanisms	7
Power	122
Thermal	17
Propulsion Hrdwr	35
Attitude Cntr Hrdwr	73
C&DH	7
Communications	38
Integration Mtrls	120
Propellent, etc	180
TOTAL	774

Orbital Insertion and Operation Study

- L2 Lissajous Orbit for Constellation-X is based on Microwave Anisotropy Probe(MAP) orbit
- The Constellation-X has unique requirements
 - The insertion (without collision) of two satellites simultaneously
 - Orbital Maneuvers to phase two of them simultaneously for Lunar Swingby
 - Constellation Management for efficient operations and high viewing efficiency
- The study will start in February and the report will be available by August 15

Mission Schedule for 2005 New Start

Fixed Optical Bench Configuration

Fixed Optical Bench Configuration

Two fixed optical bench satellites in Atlas Extended Fairing

- Components similar to Reference Configuration
- Reduced mass due to elimination of Dual Payload Adopter and optical bench deployment mechanism
- Solves insulation issues and meets light tight requirements
- Facilitates alignment and test

The configuration so far addresses packaging concept only

- GSFC mechanical subsystems is verifying the concept
- Spacecraft Component layout will be modified due to various requirements
- Launch vehicle interface will be defined for the configuration